Listening to radio emissions in aurora may help in searching alien worlds

European Space AgencyParis, June 28  The ESA’s (European Space Agency’s) cluster mission is showing scientists how to understand the radio emissions that accompany the aurora, and, in the future, search for alien worlds by listening for their sounds.

Scientists call this radio emission the Auroral Kilometric Radiation (AKR). It is generated high above the Earth, by the same shaft of solar particles that then causes an aurora to light the sky beneath.

For decades, astronomers had assumed that these radio waves traveled out into space in an ever-widening cone, rather like light emitted from a torch.

Thanks to Cluster, astronomers now know this is not true.

By analyzing 12 000 separate bursts of AKR, a team of astronomers have determined that the AKR is beamed into space in a narrow plane.

“We can now determine exactly where the emission is coming from,” said Robert Mutel, University of Iowa, who conducted the three-year study with colleagues.

For each of the AKR bursts they analyzed, the astronomers pinpointed its point of origin to regions in Earth’s magnetic field just a few tens of kilometers in size.

These were located a few thousand kilometers above where the light of the aurora is formed.

Consisting of four nearly identical spacecraft flying in formation, Cluster allowed the scientists to precisely time when the AKR washed over each of the satellites.

Using this information, the scientists triangulated the points of origin, in a similar way to the way GPS navigation works.

Satellites discovered AKR in the early 1970s. It is blocked from reaching the ground by the ionosphere, the upper reaches of Earth’s atmosphere.

“Whenever you have aurora, you get AKR,” said Mutel.

That includes aurorae on other planets, too. Visiting spacecraft have seen aurorae and detected AKR on Jupiter and Saturn, the two largest gas giants in our Solar System.

Not only will this new understanding of how the AKR is beamed into space help astronomers understand the magnetic environment of those gas worlds, it will also help them search for similar planets around other stars.

Although looking for AKR from extrasolar planets will require much larger radio telescopes than are currently available, these instruments are on the drawing boards.

Once these planets have been identified, the AKR can be monitored for how it winks on and off, allowing astronomers to calculate how long the planet takes to rotate.

It also provides new routes of investigation into the magnetic fields of other stars, many of which have magnetic fields thousands of times stronger than the Sun. They too, will produce radiation similar to AKR and these can be monitored. (ANI)

General: 
Regions: